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A B S T R A C T

Spiders are considered conservative with regard to their resting metabolic rate, presenting the same

allometric relation with body mass as the majority of land-arthropods. Nevertheless, web-building is

thought to have a great impact on the energetic metabolism, and any modification that affects this

complex behavior is expected to have an impact over the daily energetic budget. We analyzed the

possibility of the presence of the cribellum having an effect on the allometric relation between resting

metabolic rate and body mass for an ecribellate species (Zosis geniculata) and a cribellate one (Metazygia

rogenhoferi), and employed a model selection approach to test if these species had the same allometric

relationship as other land-arthropods. Our results show that M. rogenhoferi has a higher resting

metabolic rate, while Z. geniculata fitted the allometric prediction for land arthropods. This indicates that

the absence of the cribellum is associated with a higher resting metabolic rate, thus explaining the higher

promptness to activity found for the ecribellate species. If our result proves to be a general rule among

spiders, the radiation of Araneoidea could be connected to a more energy-consuming life style. Thus, we

briefly outline an alternative model of diversification of Araneoidea that accounts for this possibility.

� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

All living organisms use many energy-consuming processes to
stay alive and reproduce. On the one hand, metabolic rates vary
with changes of environmental and physiological conditions; on
the other hand, metabolic rates pose limits to physiological
changes and environmental interactions. In this way, metabolic
rates have important ecological and evolutionary consequences
(Garland and Carter, 1994; Chown, 2001), and have often been
evoked in discussions about physiological ecology and evolution-
ary physiology (Reinhold, 1999).
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Spiders are typically sit-and-wait foragers remaining motion-
less most of the time, a condition which stresses the importance of
the resting metabolic rate in their life cycle. Food availability limits
and shapes the ecology and behavior of spiders (Wise, 1993),
affecting several life history traits such as reproduction (Eberhard,
1979), web building (Pasquet et al., 1994; Sandoval, 1994),
sociality (Rypstra, 1985; Kim, 2000) and growth (Vollrath,
1985). Spiders may have evolved adaptations to unpredictable
and low prey availability (Greenstone and Bennett, 1980), a
condition that would perfectly match their alleged low resting
metabolic rates (Anderson, 1970). However, Lighton et al. (2001)
argued that spiders actually have a metabolism that is very similar
to that of other land-arthropods. Overall, it was shown that the
arthropod resting metabolic rate could be considered extremely
conservative, and that a general allometric rule between body
mass and resting metabolic rate could be modeled for all land
arthropods, except for tarantulas (Shillington, 2005), scorpions and
ticks (Lighton et al., 2001).

One important source of effects on energetic metabolism is the
execution of energetically costly behaviors (Reinhold, 1999), an
aspect particularly neglected in the study of spider physiology.
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Despite the fact that spiders are sit-and-wait foragers, a typical
economic foraging strategy as mentioned above, they are able to
exhibit some behaviors with important impacts in their daily
energetic budget (Watson and Lighton, 1994). Among web
weavers, the web building behavior is the main energetic
expenditure, thus any modification that affects the cost of web
building should be expected to have metabolic impact on the
organism, probably influencing the energetic budget and other
significant aspects of the spiders’ life, such as reproduction and
survival rate (Angilletta et al., 2003). The loss of the cribellate silk is
probably one of these modifications.

The cribellum is a modification of the anterior median
spinnerets into one or two small flat plates densely covered with
tiny spigots which, together with the calamistrum, a row of strong
bristles on the metatarsus of leg IV, produce the cribellate silk
(Foelix, 1996). Even though the cribellate spiders were originally
considered a separate group which followed an evolutionary path
parallel to ecribellate spiders, resulting in numerous convergences
(Shear, 1986), recent phylogenetic studies have shown that the
cribellum is, in fact, plesiomorphic for all extant spiders and most
groups exhibit a secondary loss of this character (Lehtinen, 1967;
Coddington and Levi, 1991; Griswold et al., 1999). The production
of the cribellate orbweb is more expensive than the production of
an ecribellate orbweb: while ecribellate webs are adhesive due to
an aqueous, diluted glue, the cribellate silk is constituted of
numerous tiny proteic fibrils that need to be repeatedly ‘‘combed’’
in order to produce the capture spiral (Peters, 1987). Cribellate
spiders also reingest their webs less frequently than ecribellate orb
weavers. Indeed, it was shown that there is a significant difference
in energy economy of web building and maintenance of viscid
orbwebs when compared to cribellate orbwebs (e.g. Opell, 1996,
1998). Finally, cribellate spiders seem to be more reluctant to
abandon their webs than ecribellate spiders, even when submitted
to low prey availability, suggesting that the energetic and
behavioral commitment to web building is greater in cribellate
animals (Kawamoto, 2007; Kawamoto and Japyassú, 2007).

In the present work we investigate the possibility that the
behavioral and physiological differences associated with the
presence or absence of the cribellum have an effect on the resting
metabolic rate of spiders. In order to do that we measured resting
[()TD$FIG]
Fig. 1. Zosis geniculata (a) and Metazygia rogenhoferi (b), scale 3 mm. Drawings based
metabolism and body mass of a cribellate and an ecribellate
species, and employed a model selection approach to explore the
allometric relation between these variables compared to the
prediction for land arthropods (Lighton et al., 2001). Finally, we
briefly discuss the relevance of our findings to the understanding of
diversity within the clade of orbweavers. Ecribellate orbweavers
(Araneoidea) comprise 27.8% of the total number of spider species
(Platnick, 2010, catalog version 10.5), and all attempted explana-
tions to this huge diversity (Lubin, 1986; Eberhard, 1989; Craig
et al., 1994; Köhler and Vollrath, 1995; Opell et al., 2006) have been
contentious in one way or another (Lubin, 1986; Craig and
Freeman, 1991; Craig and Ebert, 1994; Opell, 1996, 1998;
Watanabe, 1999; Zschokke, 2002; Li et al., 2004; Bruce et al.,
2005). Based on our findings, we present a new model that could
explain the radiation of orbweb spiders.

2. Methods

2.1. Species

We chose Zosis geniculata (Olivier, 1789; Uloboridae) and
Metazygia rogenhoferi (Keyserling, 1878; Araneidae) as represen-
tatives of the cribellate and ecribellate orb weavers, respectively.
The choice was based on several criteria that enhance compara-
bility between these species. For example, they have a similar adult
body size and overall shape, they spin similar-sized orb webs
(Fig. 1), both species do not show univoltine life cycle and their
families are at the base of the sister clades Deinopoidea (cribellate)
and Araneoidea (ecribellate), thus minimizing the effects of these
characteristics on the variables being analyzed. Furthermore, in
order to control for sexual dimorphism and ontogeny we analyzed
only adult females.

We analyzed ten individuals of M. rogenhoferi and twenty
individuals of Z. geniculata. Specimens from both species were
collected in the city of São Paulo. Adult females were brought to the
lab and kept inside individual acrylic boxes (31 cm � 31 cm �
12 cm) in a room with a 12:12 light cycle and small temperature
(24–26 8C) and humidity (76–81% UR) variation. Many M.

rogenhoferi specimens died in the first week at the laboratory
due to nematoid or fungus parasitism. After this first week
on photographs of webs of Z. geniculata (c) and M. rogenhoferi (d), scale 2 cm.



Table 1
Summary of the tested models. See Section 2 for further description.

Description

Model 0 Parameters from Lighton et al. (2001); error estimated

Model 1 Parameters estimated for the full sample; different errors

Model 2 Parameters estimated for each species individually;

different errors

Model 3 Intercept estimated for each species; same slope;

different errors

Model 4 Intercept estimated for each species, same slope and error

Model 5 Intercept estimated for Metazygia rogenhoferi; Zosis geniculata

modeled as Lighton et al. (2001)
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precaution period (to exclude parasitized individuals), spiders
were not fed for at least three days prior to measurement of oxygen
consumption. All spiders were weighted before respirometric
measurements. The weight was used to model the allometric
parameter in the statistical analysis.

2.2. Respirometry

We used a flow-through intermittent setup. Spiders were
inserted into a cylinder shaped test chamber (80 mL) plugged at
both ends with three-way valves and partially covered with
humidified filter paper to maintain air humidity and to allow the
spiders to acquire resting posture. The chambers with spiders were
maintained at 25 8C of temperature along all the measurement.
The spiders were initially given 1 h to achieve rest condition. After
this first hour, the chamber was purged with outdoor air and then
left closed for 4 h. After this period, the air was drawn from the
chambers for 4 min, and passed through carbon dioxide and water
absorbers before going into the PA-1 oxygen analyzer (Sable
Systems Inc.). The air flow used was 150 mL/min and did not seem
to disturb spiders. Oxygen depletion between the initial and final
sampling was estimated via integration (DatacanV software from
Sable Systems Inc.) and used to calculate metabolic rates over the
time interval.

The resting metabolism was measured in the lightened period
of the day, which is the period of lowest activity for spiders. The
oxygen consumption of each animal was recorded three times and
only the lowest value for each spider was considered. Spurious
values (e.g. values from the same day consistently above the
others) were discarded. In order to avoid hypoxia effects we
estimated the initial condition of oxygen volume in the chamber
based on a concentration of 21% of atmospheric air. The oxygen
depletion during 4 h of experimentation was quite low (higher
value around 0.01%) for both spider species, ensuring that there
were no hypoxia effects. Carbonic gas production was even lower if
we consider a respiratory quotient of around 0.7 (Lighton et al.,
2001) making hypercapnia effects unlikely. For this reason, we are
confident that there were no physiological changes due to changes
in the gas composition inside the chambers during the 4 h of
measurement. All consumption values were corrected to S.T.P.
conditions, allowing comparison to literature values. The raw
respirometric measurements and body masses of the analyzed
individuals can be found in online Supplementary Data.

2.3. Statistical analysis

The relationships between metabolic rates (MR) and body mass
(BM) were modeled as MR = aBM^b, which can be modeled linearly
in its logarithmic form: ln(MR) = ln(a) + b � ln(BM) + e, with ln(a)
as the intercept, b as the slope and e as the error. The different
hypotheses of allometry were investigated through a likelihood-
based model-selection approach assuming a normal distribution
for the error term e. Even though we evaluated different species we
did not model phylogenetic dependence of the error term, given
that allometric relationships between MR and BM are usually
understood as products of physical characteristics of the system
(Chaui-Berlinck, 2006; Silva et al., 2007; Glazier, 2009).

To compare the measurements obtained for both species with
the theoretical model proposed by Lighton et al. (2001) for land-
arthropods (excluding ticks and scorpions), we modeled the slope
and intercept for each species according to six proposed models.
The null model (model 0) evaluates if the allometric curves of both
species can be modeled with the equation for land-arthropods.
Model 1 uses only one allometric curve for the whole sample (for
the two species) but estimates all parameters. Model 2 sets two
allometric curves, one for each species, with all parameters being
estimated independently for both. As some of the estimated
parameters had overlapping confidence intervals (see Section 3,
Table 2), we constructed reduced versions of the two-allometries
model, with parameters being estimated jointly for both species.
Thus, model 3 uses the same slope for both allometries, and model
4 uses the same error and slope for both allometries. Model 5
models Z. geniculata as a land-arthropod, following Lighton et al.
(2001), and M. rogenhoferi as having the same slope as Z. geniculata,
but different intercept. These models are summarized in Table 1,
and their justifications will be further explained below. In this way,
we evaluated: (1) if both species present the same or distinct
allometric relationships; (2) if the parameters of those relation-
ships are the same or different among species; (3) if they conform
to the predictions given by the interspecific allometry estimated
for land-arthropods.

The parameters were estimated through maximum likelihood
optimization. As different models differ in the number of
parameters, we extracted the second order Akaike Information
Criterion (AICc; Akaike, 1974), which not only penalizes the
likelihood of a given model as a function of the number of
parameters, but also corrects for low sample size. AICc is calculated
as: AICc = �2 log L + 2K + 2K(K + 1)/(n � K � 1), with L being the
likelihood of a given model, K the number of parameters in the
analysis and n the sample size. AICc gives a general measure of fit
between the model and the data, and in order to compare two
competing models we first rescaled the likelihood for each model
as follows: L0 � exp[(�1/2)DAICc], with DAICc being the difference
between the estimated AICc of a given model and the lowest AICc in
the analysis. To select between two competing models we
employed a likelihood-ratio test. The ratio between two rescaled
likelihoods is an overall account of the strength of the observed
evidence in favor of a given model in relation to another, favoring
most parsimonious explanations. Ratios superior to 8 were taken
as strong evidence in support of one hypothesis over the
alternative one (Royall, 1997). The tests were performed in the
order that they were presented above, from less complex (model 0)
to more complex (model 2) and then selectively reducing spurious
parameters (models 3–5), always with models with more
parameters in the numerator. This way we test for the existence
of evidence in favor of models with more parameters, rejecting
more complex ones when ratios are inferior to the cut-off value
(L0 < 8). The preferred model (less complex or the one favored by
the test) in one step was then tested against the following model in
the next test. All the statistical analyses were run in R software,
version 2.10.0 (R Development Core Team, 2010).

3. Results

M. rogenhoferi (Araneidae) shows on average a higher resting
metabolism than Z. geniculata (Uloboridae), despite the fact that it
also shows smaller body mass. The estimated parameters for the
various models are summarized in Table 2. The statistics are
depicted in Table 3. From model 0 to model 2, the addition of new



Table 2
Parameters of the models estimated by maximum-likelihood optimization. Each value is presented with the confidence intervals (in parentheses). The left values in models

2–4 are the estimated parameters for Metazygia rogenhoferi and the right ones the parameters estimated for Zosis geniculata. NA indicates the values obtained from Lighton

et al. (2001) model for land-arthropods.

Model ln(a) (intercept) b (slope) e (error)

0 NA NA 0.452 (0.358/0.596)

1 �3.535 (�4.536/�2.534) 0.292 (0.056/0.529) 0.303 (0.240/0.399)

2 �0.905 (�1.916/�0.207) �1.296 (�2.384/�0.208) 0.889 (0.484/1.236) 0.985 (0.665/1.304) 0.149 (0.102/0.249) 0.206 (0.155/0.291)

3 �0.623 (�1.716/0.464) �1.386 (�2.304/�0.473) 0.958 (0.754/1.166) 0.149 (0.102/0.250) 0.206 (0.155/0.291)

4 �0.581 (�1.653/0.491) �1.351 (�2.161/�0.540) 0.969 (0.798/1.112) 0.189 (0.150/0.249)

5 �1.037 (�1.159/�0.914) NA NA 0.192 (0.152/0.253)

Table 3
Statistics for the fitted models. K is the number of parameters, �2 log L is the negative log-likelihood, AICc is the second order Akaike Information Criterion, DAICc is the

difference between the model’s AICc and the lowest AICc found and L0 is the rescaled likelihood value.

K �2 log L AICc DAICc L0

Model 0 1 37.54099381 39.68385096 49.22411325 2.05E�11

Model 1 3 13.48714467 20.41022159 29.95048389 3.14E�07

Model 2 6 �16.1895128 �0.53733889 9.002923405 0.01109277

Model 3 5 �16.08339752 �3.583397517 5.956864778 0.05087252

Model 4 4 �14.8292624 �5.229262404 4.310999891 0.11584526

Model 5 2 �13.98470674 �9.540262295 0 1

[()TD$FIG]
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parameters to be estimated greatly increases the explanatory
power of the model, as is evident by the decrease of the negative
log likelihood and of the error term. Particularly remarkable is the
huge increase in explanatory power from model 1 to 2, showing
that, despite the doubling of the number of parameters, the
penalized likelihood increases almost ten thousand-fold. The
confidence intervals of the parameters in model 2 are, however,
overlapping, an indicative that further reduction in the number of
parameters is possible. Model 3 presents the same slope for both
models, slightly increasing the explanatory power, but still
presents overlapping errors and intercepts. Model 4 further
improves the explanatory power by introducing a single error
term but the confidence intervals of the intercepts are still
superposed. A further reduction of this model would result in
model 1, with parameters being estimated jointly for both species,
a model that is not as well-supported by the observations as model
4 (Table 3). It is noteworthy that, in spite of the overlap between
intercepts, the confidence interval for the intercept of M.

rogenhoferi does not overlap with the same parameter estimated
by Lighton et al. (2001), while Z. geniculata’s does [ln(a) = �1.746;
after the appropriate transformations]. The slope estimated by
Lighton et al. (2001) also falls within the range of the one estimated
in model 4 (b = 0.856; after the appropriate transformations). For
these reasons, we built model 5 using Lighton et al.’s estimates for
both species, except for the intercept of M. rogenhoferi. This model
showed high explanatory power, small errors and narrow
confidence interval for the estimated parameter.

The likelihood-ratio tests are summarized in Table 4. The test
shows that a two-allometries model is better suited to explain the
relation between metabolic rate and body mass in these two
species, as evident by the ratio between models 1 and 2. The
reduction of the number of parameters did not result in any
Table 4
Results of the likelihood-ratio test of the fitted models. The preferred model for each

test is highlighted in bold.

Test Likelihood ratio

Model 1/model 0 1.53E + 04

Model 2/model 1 3.54E + 04

Model 2/model 3 0.218050343

Model 3/model 4 0.439142005

Model 4/model 5 0.11584526
significant increase (or decrease) in explanatory power, as shown
by the tests involving models 3 and 4, but they were always
preferred, as they presented fewer parameters. The test between
model 4 (the simplest two-allometry model based only on our
data) and model 5 (two-allometry model based on literature)
shows that there is no evidence to suggest that the estimated
parameters for Z. geniculata differ from those predicted by Lighton
et al. (2001), which models the allometric relation as: MR (mL/
h) = 0.174 � BM (mg)^0.856. In fact, there seems to be a significant
amount of evidence supporting the last model [likelihood ratio
(model 5/model 4) = 8.632]. This implies that, although Z.

geniculata has the resting metabolism expected for land-arthro-
pods of the same mass, M. rogenhoferi shows a distinct allometric
relation between body mass and metabolic rate, presenting values
superior to those expected for land-arthropods of the same mass
(Fig. 2). Hence, the allometric relation for M. rogenhoferi can be
modeled as: MR (mL/h) = 0.355 � BM (mg)^0.856.
Fig. 2. Graphical representation of the preferred two-allometries model (model 5)

showing the relationship between rest metabolic rate measured as oxygen

consumption (mL/h) and body mass (g). The axes are logarithmized.
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4. Discussion

4.1. Resting metabolism of orbweavers

Our analysis unambiguously discards a one-allometry model
for both species, pointing the existence of two distinct allometric
curves correlating metabolic rate and body mass, with the
ecribellate orbweaver presenting a higher metabolism than the
cribellate one (Fig. 2). The new two-allometries model contradicts
the idea that spiders can be simply understood as land arthropods
in energetic terms (Lighton et al., 2001). Previous works have
already suggested that tarantulas and spiders from the family
Araneidae could be in the lower and upper limits of variation of
metabolic rate found among spiders, respectively (Anderson, 1996,
1970; Anderson and Prestwich, 1982; Shillington, 2005). Despite
these long known tendencies, no previous work has actually tested
the validity of these assumption.

Previous works failed to find any clear resting metabolism
differences among different groups of spiders. Greenstone and
Bennett (1980) investigated the alleged lower metabolic rate of
Scytodidae, which includes brown recluse spiders known to
survive almost a year without food, but found no significant
difference to other spiders. Anderson (1994) presented a compar-
ative analysis using species from the Theridiidae family with
distinct life styles but only found an effect of low metabolism
apparently caused by food restriction. It is also possible that the
differences in the life style aspects explored by these authors had
only a slight energy impact in these spiders’ energetic budget and
could simply be the result of changes in energy use from one
activity to another, through changes in behavior with similar costs.
This is a plausible mechanism that could allow the resting
metabolism to remain working in the same level despite apparent
drastic changes in ecology.

On the other hand, Shillington (2005) found a higher rest
metabolism in males, behaviorally more active than female of the
same tarantula species, suggesting that sexual differences in
tarantulas habits could affect intraspecific difference in metabolic
rate. These results also suggest the necessity to inspect the
behaviors from the energetic point of view in a more useful way to
elucidate the metabolic rates rules. Our work presents the first
comparative measurement of cribellate and ecribellate orb
weavers, also showing the first evidence that the presence of
the cribellum has an impact on the energetic metabolism of
spiders, probably due to the overall change in behavior and pattern
of activity relative to web building activities.

A higher metabolic rate would demand an enhanced foraging
effort by the organism in order to fulfill the elevated energetic
needs, a factor that is usually associated with a higher predation
risk (Angilletta et al., 2003). In this manner, the connection
between a higher metabolic rate and an increase in species
richness is not straightforward, but it is exactly what is found in
Araneidae. Below we will briefly expose a model that could explain
such complex association.

4.2. An alternative model for Araneoidea diversification

Since the resting metabolic rate is coupled to activity metabolic
rate (Bennett, 1991; Reinhold, 1999; Hulbert and Else, 2000;
Shillington, 2005), the higher resting metabolism of ecribellate
spiders, such as M. rogenhoferi, could also be correlated to a higher
activity metabolism, allowing a more active and exploratory
behavior. This is indeed what happens with our model organisms,
as M. rogenhoferi is more prone to activity than a cribellate
orbweaver, reconstructing webs and changing web sites more
frequently than Z. geniculata (Kawamoto and Japyassú, 2008). The
increase of energetic costs in one behavioral function could be
obtained by the allocation of energetic savings from other
functions, in an evolutionary process known as allocation trade-
off (Angilletta et al., 2003). The evolution of a cheaper web-
building and web maintenance in viscid orbweavers would have
paved the way for increased metabolic rates, which in turn allowed
higher levels of activity. If the generalist microhabitat choice of the
orbweavers of the family Uloboridae (Eberhard, 1971) was
prevailing when these spiders traded-off a cheaper web for a
costly metabolism, the increased activity pattern of the emerging
clade (viscid orbweavers) could result in the exploration of a
variety of niches derived from the evolution of winged insects
(Vollrath and Selden, 2007), thus explaining the radiation of
Araneoidea. In this way, the cheaper web would be a step to the key
feature that allowed species diversification: the expensive and
enhanced mobility of ecribellate orbweavers.

The association between the loss of the cribellum and the
evolution of a more diversified clade could be a more general
phenomenon. The cribellum has been lost multiple times along the
spider phylogeny (Lehtinen, 1967) and many cribellate groups are
sister to more diverse ecribellate clades (Kawamoto, 2007;
Kawamoto and Japyassú, 2007; Spagna and Gillespie, 2008;
Blackledge et al., 2009). Behavioral evidence suggests that the
loss of the cribellum is related to an increased pattern of activity
(Forster, 1970; Kawamoto, 2007; Kawamoto and Japyassú, 2007),
indicating that any model that tries to explain the high diversity of
ecribellate orbweavers could possibly be an instance of a more
general model of spider biodiversity.

5. Conclusion

Our two species study has reinforced the idea that Araneidae
has higher resting metabolism compared to the general expecta-
tions for land arthropods. This high metabolism is associated to an
important evolutionary web type transition which is frequently
cited as the cause of orbweb radiation. We put forward a model
that could explain, from a physiological standpoint, the possible
correlation between energetic budget and species diversity in
spiders. Variation in such basic physiological parameters certainly
has strong fitness consequences, and we expect that our findings
motivate the exploration of the possible evolutionary outcomes of
changes in the metabolic rate of spiders.
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